7,473 research outputs found

    Shearing box simulations of accretion disk winds

    Full text link
    The launching process of a magnetically driven outflow from an accretion disk is investigated in a local, shearing box model which allows a study of the feedback between accretion and angular momentum loss. The mass-flux instability found in previous linear analyses of this problem is recovered in a series of 2D (axisymmetric) simulations in the MRI-stable (high magnetic field strength) regime. At low field strengths that are still sufficient to suppress MRI, the instability develops on a short radial length scale and saturates at a modest amplitude. At high field strengths, a long-wavelength "clump" instability of large amplitude is observed, with growth times of a few orbits. As speculated before, the unstable connection between disk and outflow may be relevant for the time dependence observed in jet-producing disks. The success of the simulations is due in a large part to the implementation of an effective wave-transmitting upper boundary condition.Comment: 10 pages, 13 figure, accepted for publication in A&A, complimentary movies at http://ucolick.org/~rainer/pascheibe

    Photoacoustic detection of stimulated emission pumping in p-difluorobenzene

    Get PDF
    Photoacoustic detection has been used to monitor a stimulated emission pumping process in p‐difluorobenzene. Using the Ã^(1)B_(2u)5^1 state as an intermediate, several vibrational levels of the ground electronic state were populated. The photoacoustic method is an attractive alternative to other detection techniques because of its sensitivity, simplicity, and its ability to differentiate between stimulated emission pumping and excited state absorption. An example of excited state absorption in aniline is given

    First International Merkel Cell Symposium, Heidelberg, Germany

    Get PDF

    Double-diffusive erosion of the core of Jupiter

    Get PDF
    We present Direct Numerical Simulations of the transport of heat and heavy elements across a double-diffusive interface or a double-diffusive staircase, in conditions that are close to those one may expect to find near the boundary between the heavy-element rich core and the hydrogen-helium envelope of giant planets such as Jupiter. We find that the non-dimensional ratio of the buoyancy flux associated with heavy element transport to the buoyancy flux associated with heat transport lies roughly between 0.5 and 1, which is much larger than previous estimates derived by analogy with geophysical double-diffusive convection. Using these results in combination with a core-erosion model proposed by Guillot et al. (2004), we find that the entire core of Jupiter would be eroded within less than 1Myr assuming that the core-envelope boundary is composed of a single interface. We also propose an alternative model that is more appropriate in the presence of a well-established double-diffusive staircase, and find that in this limit a large fraction of the core could be preserved. These findings are interesting in the context of Juno's recent results, but call for further modeling efforts to better understand the process of core erosion from first principles.Comment: Accepted for publication in Ap

    A map on the space of rational functions

    Full text link
    We describe dynamical properties of a map F\mathfrak{F} defined on the space of rational functions. The fixed points of F\mathfrak{F} are classified and the long time behavior of a subclass is described in terms of Eulerian polynomials

    Development of a scanning electron mirror microscope

    Get PDF
    Scanning electron mirrors microscope design and developmen

    Large jets from small-scale magnetic fields

    Full text link
    We consider the conditions under which a rotating magnetic object can produce a magnetically powered outflow in an initially unmagnetized medium stratified under gravity. 3D MHD simulations are presented in which the footpoints of localized, arcade-shaped magnetic fields are put into rotation. It is shown how the effectiveness in producing a collimated magnetically powered outflow depends on the rotation rate, the strength and the geometry of the field. The flows produced by uniformly rotating, non-axisymmetric fields are found to consist mainly of buoyant plumes heated by dissipation of rotational energy. Collimated magnetically powered flows are formed if the field and the rotating surface are arranged such that a toroidal magnetic field is produced. This requires a differential rotation of the arcades' footpoints. Such jets are well-collimated; we follow their propagation through the stratified atmosphere over 100 times the source size. The magnetic field is tightly wound and its propagation is dominated by the development of non-axisymmetric instabilities. We observe a Poynting flux conversion efficiency of over 75% in the longest simulations. Applications to the collapsar model and protostellar jets are discussed.Comment: 9 pages, 12 figures, accepted for publication in A&A, complementary movies at http://www.mpa-garching.mpg.de/~rmo/pap3/index.htm

    Conditioning Expressive Language in a Nonverbal Child

    Get PDF
    The problem of treating the child with delayed speech acquisition has generated a considerable amount of research and these studies have pointed out the need for further work in this area. The purpose of this study is to test the procedures of one particularly effective study, that of Dr. Burl B. Gray at the Monterey Institute for Speech and Hearing in Monterey, California. By removing it from the clinical setting of the Institute, with its unusually well-trained and highly specialized staff, and by successfully employing its procedures using comparatively untrained personnel, it was felt that this program might be applied to more general use. This study, then, investigated the effectiveness of Gray\u27s language acquisition program on a nonverbal five and one half year old boy
    corecore